Lab Assignment 4: Transform analysis of LTI systems

L4.1: Suppose the system function of a causal system is given by

\[H(z) = \frac{z^{-1} - a^*}{1 - az^{-1}}. \]

Assume \(a = r e^{j\theta} \) (with \(r < 1 \)), a) find the magnitude, phase, and group delay of \(H(z) \); b) Use Matlab to plot the log magnitude, phase, and group delay of the system defined in problem 5.8 for \(a = 0.8 \) and \(a = -0.8 \).

L4.2: A lowpass FIR filter is given as:

\[h[0] = \frac{(1+\sqrt{3})}{4\sqrt{2}}, h[1] = \frac{(3+\sqrt{3})}{4\sqrt{2}}, h[2] = \frac{(3-\sqrt{3})}{4\sqrt{2}}, h[3] = \frac{(1-\sqrt{3})}{4\sqrt{2}}, \text{ and } h(n) = 0 \]

for other \(n \). Now define a highpass FIR filter \(g[n] \) based on \(h[n] \) as \(g[n] = (-1)^n h[n] \). We know that the DC gain of \(h[n] \) is \(H(e^{j\omega})|_{\omega=0} = \sum_{n=-\infty}^{\infty} h[n] = \sqrt{2} \) and \(G(e^{j\omega}) = H(e^{j(\omega+\pi)}) \). It also can be shown that \(|H(e^{j\omega})|^2 + |G(e^{j\omega})|^2 = 2 \). In other words, \(|H(e^{j\omega})|^2 + |H(e^{j(\omega+\pi)})|^2 = 2 \). This is one of the conditions that \(h[n] \) has to satisfy in order to be called an orthogonal wavelet filter.

(a) Use “freqz” in Matlab to plot the log magnitude and phase of \(h[n] \) and \(g[n] \).

(b) Plot \(|H(e^{j\omega})|^2 + |H(e^{j(\omega+\pi)})|^2 \) and check if it is indeed a constant that equals to 2.